Monitoring electron and proton diffusion flux through three-dimensional, paper-based, variable biofilm and liquid media layers.

نویسندگان

  • Gihoon Choi
  • Seokheun Choi
چکیده

The goal of this work is to pursue analytical approaches that elucidate electron and proton diffusion inside the Shewanella oneidensis biofilm and bulk liquid, which will inevitably promote the translation of Microbial Fuel Cell (MFC) technology for renewable, "green energy" solutions that are in demand to sustain the world's ever-increasing energy demands and to mitigate the depletion of current resources. This study provides a novel strategy for monitoring electron/proton fluxes in 3-D multi-laminate structures of paper as a scaffold to support S. oneidensis biofilms and bulk media liquid. Multiple layers of paper containing bacterial cells and/or media are stacked to form a layered 3-D model of the overall biofilm/bulk liquid construct. Mass transport of electrons and protons into this 3-D system can be quantified along with the exploration of microbial energy production. Assembly of a 3D paper stack can be modular and allows us to control the thickness of the overall biofilm/bulk liquid construct with the different diffusion distances of the electrons/protons through the stack. By measuring the current generated from the 3-D stack, the electron and proton diffusivity through biofilms were quantitatively investigated. We found that (i) the diffusion length of the electrons/protons in the S. oneidensis biofilm/bulk liquid is a determinant factor for the MFC performance, (ii) the electron transfer through the endogenous mediators of S. oneidensis can be a more critical factor to limit the current/power generation of the MFCs than the proton transfer in the MFC system and (iii) the thicker biofilm allows higher and longer current generation but requires more time to reach a peak current value and increases the total energy loss of the MFC system.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Investigation of the Effect of Gas Diffusion Layer with Semicircular Prominences on Polymer Exchange Membrane Fuel Cell Performance and Species Distribution

A three-dimensional computational fluid dynamics model of a proton exchange membrane fuel cell (PEMFC) with both gas distribution flow channels and Membrane Electrode Assembly (MEA) is developed. A set of conservation equation is numerically solved by developing a CFD code based on the finite volume technique and SIMPLE algorithm. In this research, some parameters like oxygen consumption, water...

متن کامل

Three Dimensional Computational Fluid Dynamics Analysis of a Proton Exchange Membrane Fuel Cell

A full three-dimensional, single phase computational fluid dynamics model of a proton exchange membrane fuel cell (PEMFC) with both the gas distribution flow channels and the Membrane Electrode Assembly (MEA) has been developed. A single set of conservation equations which are valid for the flow channels, gas-diffusion electrodes, catalyst layers, and the membrane region are developed and numer...

متن کامل

Numerical Simulation of Non-Uniform Gas Diffusion Layer Porosity Effect on Polymer Electrolyte Membrane Fuel Cell Performance

Gas diffusion layers are essential components of proton exchange membrane fuel cell since the reactants should pass through these layers. Mass transport in these layers is highly dependent on porosity. Many of simulations have assumed, for simplicity, the porosity of GDL is constant, but in practice, there is a considerable variation in porosity along gas diffusion layers. In the present study ...

متن کامل

Three Dimensional Analysis of Laminated Cylindrical Panels with Piezoelectric Layers

A semi-analytical solution is presented for three dimensional elastic analysis of finitelylong, simply supported, orthotropic, laminated cylindrical panels with piezoelectric layers subjected to outer pressure and electrostatic excitation. Both the direct and inverse piezoelectric effects are investigated. The solution is obtained through reducing the highly coupled partial differential equatio...

متن کامل

Monte Carlo Simulation of Radiation effects in protection layers of logical cell of the digital gate in ‎the FPGA for electron and proton rays Using the FLUKA Code

In this paper, radiation effects in protection layers of logical cell of the digital gate in the FPGA for electron and proton rays was simulated Using the FLUKA Code. by using of the Monte Carlo simulation, the electron and proton transport into the logical cell of the digital gate in the FPGA will be studied. In this simulation, the maximum energy of the electrons and protons at the entrance o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Analyst

دوره 140 17  شماره 

صفحات  -

تاریخ انتشار 2015